Fikirden Uretime: LangChain
ile Akill Al Agent'lar
Gelistirme Yolculugu

LangChain ve LangGraph kullanarak uretime hazir,
karmasik Al uygulamalari olusturmak icin pratik bir renber.

O'REILLY

Learning -

LangChain

o o Bu sunum, temel bir LLM uygulamasindan baslayarak, kendi
Building Al and LLM Applications AL e - - .
with LangChain and LangGraph verilerinizle konusabilen, gecmis konusmalar1 hatirlayabilen ve
otonom olarak eyleme gecebilen karmagsik bir Al agent’a uzanan
gelistirici yolculugunu adim adim anlatmaktadir.
LangChain’in temel yap1 taglarindan baslayip LangGraph ile
Mayo Oshin & gelismis mimariler kurmaya ve LangSmith ile uygulamay1
& uretime tagimaya kadar tiim stireci kapsayacagiz.

OREILLY"

&1 NotebookLM

LLM'ler Gucludur, Ancak Sinirlar1 Vardir

ChatGPT'nin ortaya cikisiyla birlikte uiretken yapay zeka uygulamalar: gelistirmek hi¢ olmadig: kadar
kolaylasti. Ancak LLM'leri prototipten uretime tasimak, temel bazi zorluklar1 beraberinde getirir:

\ |
N
Bilgi Kesintisi (Knowledge Cutoff) Durumsuzluk (Statelessness)
LLM'ler, egitim verilerinin otesindeki giincel LLM'ler dogasi geregi durumsuzdur. Her bir
olaylar veya ozel bilgiler hakkinda bilgi etkilesimi bagimsiz olarak islerler ve onceki
sahibi degildir. Bu durum, yanhs veya konusmalar1 hatirlamazlar. Bu, dogal bir
"haliisinasyon" olarak adlandirilan yaniltici diyalog akisi olusturmayi zorlagtirir.

ctkhlara yol acabilir.

e A

Eyleme Gegememe (Inability to Act)

LLM'ler metin uiretirler, ancak dig diinyayla
etkilesime gecemez, API'lar1 cagiramaz veya
bir hesap makinesi gibi basit araclari bile
kullanamazlar.

Gergek diinyada deger yaratan uygulamalar, bu sinirlart asmak zorundadir.

& NotebooklLM

Yol Haritaniz: LangChain ve Ekosistemi

LangChain, LLM’lerin bu temel sinirliliklarin1 agsmak i¢in tasarlanmig agik kaynakl bir framework'tur. En ilging LLM
uygulamalarimin, LLM’leri ‘diger hesaplama veya bilgi kaynaklarr’ ile birlestirmesi gerektigi fikrinden dogmustur.

“‘u - o < fx:“}

H

LangChain
Uygulama Gelistirme

\

LLM uygulamalar1 icin degistirilebilir yapi
taglar sunar: LLM entegrasyonlari, Prompt
sablonlari, RAG bilesenleri (Document
Loader, Text Splitter, Vector Store), Araclar
(Tools) ve daha fazlasu.

Uygulamanizi saglayicidan bagimsiz ve
gelecege hazir hale getirir.

V2N
1o

LangGraph

Agent Mimarileri Olusturma

Dongiiler ve durum yonetimi iceren

karmasik, cok adimli Al agent'lar olusturmak

icin bir kiitiiphanedir. Hafiza eklemek ve
LLM'e karar verme yetenegi kazandirmak
icin kullanilir.

Durumlu (stateful) ve otonom sistemler
insa etmenizi saglar.

MM

N

LangSmith
Hata Ayiklama, Test ve Gozlemleme

Al ig akiglarinizi uctan uca izlemek, test
etmek, degerlendirmek ve monitor etmek
icin tasarlanmisg bir platformdur.

Uygulamamzin giivenilirligini ve
performansini artirir,

& NotebooklLM

Yolculugun ilk Adimi: Temel Bir LLM Zinciri Olusturmak

Her sey basit bir zincirle baglar. LangChain Expression Language (LCEL) kullanarak, farkli bilesenleri birbirine kolayca
baglayabiliriz. Bu, LLM uygulamasinin en temel formudur.

4
[Input: {"question™: ...}]H [Prr::-mpt'l‘emplate]}—} [Chat Model] H [Output Parser] H[Output: "Cevap"]
J

— 9 _ PromptTemplate: Kullanici Chat Model (LLM): OpenAl, Output Parser: LLM’in metin
Anthropic, Google gibi farkhi JSORJ c1ktisini JSON veya CSV gibi

;]/ girdisini dinamik olarak bir

prompt'a yerlestirmeyi saglar. saglayicilarla ortak bir araytiz yapilandirilmis formatlara
Tekrar kullanilabilir ve yonetimi iizerinden etkilesim kurar. dontigtiirtir.
kolaydr.
Python Kodu: JavaScript Kodu:
chain = prompt | model | parser const chain = prompt.pipe(model).pipe(parser)

Bu yapi, LLM'in yeteneklerini programatik olarak kullanmanin temelini olusturur. Ancak hentiz kendi verilerimizle konugsamiyor.

& NotebooklLM

Yetenek Gelistirme: Verilerinizle Konusan Uygulamalar Yaratmak (RAG)

Problem: Temel LLM zincirimiz, yalnizca egitim verilerinde bulunan bilgilere erisebilir. Peki ya sirketinizin dzel
dokiimanlari veya guincel veriler hakkinda sorulari nasil yanitlayacak?

Co6zum: Retrieval-Augmented Generation (RAG)

RAG, LLM'i harici bir bilgi tabanina baglayarak bu sorunu ¢ozer. Sureg, kullanici sorusuna en uygun bilgiyi
bulup LLM'e "baglam" olarak sunarak calisir.

[

-

b

Convert to text

"'1

"

”

.

Split into chunks

Chunk

Chunk

Chunk

~

Asama 1: Dizinleme (Indexing)

Dokumanlariniz metne donusturultr, anlamli pargalara ayrilir,
sayisal temsillere (embedding) gevrilir ve hizli arama igin bir

vektor veritabaninda saklanir.

Convert to

numbers and store

[0, 0.2,0.5, ...]

Vector store

-
Indexing

(8)
Question ”=‘

Documents

e

-

e

A

L.

Retrieval

Relevant
document

""|

&

e

N

Generation

Content
window

-

(e

#

Asama 2: Geri Getirme ve Uretme (Retrieval & Generation)

Kullanicinin sorusu da bir embedding'e donusturulur ve
veritabanindaki en ilgili dokiman pargalarini bulmak igin kullanilr.
Bu parcgalar, dodru bir cevap tretmesi igin LLM'e baglam olarak

verilir.

& NotebooklLM

RAG Adim 1: Bilgi Tabaninizi Hazirlama (Dizinleme)

Etkili bir RAG sistemi kurmanin ilk adimy, verilerinizi LLM'in anlayabilecegi ve arayabilecegi bir formata

donustirmektir. Bu siirece "ingestion" veya "indexing" denir.

- \
ﬁ“‘" N

ot
=2 (] (-
Yikleme (Load)

PDF, TXT, HTML, hatta Notion
veya Slack gibi kaynaklardan
metin verilerini ¢ikarmak.

LangChain Araci: "Document
Loaders™ (PyPDFLoader,
WebBaseloader vb.)

b

_

Bolme (Split)

Uzun dokiimanlari, anlamsal
butunlugu koruyarak daha
kuglk, yonetilebilir pargalara
(chunks) ayirmak.

LangChain Aracr: “Text
Splitters®

(RecursiveCharacterTextSplitter)

S

D — 4 5,

Gomme (Embed)

Her metin pargasinin anlamsal
icerigini, 'embedding’ adi verilen
yogun bir sayisal vektore
donusturmek. Benzer

anlamlara sahip metinler, vektor
uzayinda birbirine daha yakin
olur.

LangChain Araci: "Embedding
Models® (OpenAlEmbeddings,
Cohere, vb.)

Depolama (Store)

Bu vektorleri, anlamsal
benzerlik aramalarini verimli bir
sekilde yapabilen ozel bir
veritabaninda saklamak.

LangChain Aract: “Vector
Stores” (PGVector, Weaviate,
vb.)

& NotebookLM

RAG Adim 2: Dogru Bilgiyi Akillica Geri Getirme (Retrieval)

Verileriniz dizinlendiginde, bir sonraki adim, kullanicinin sorusuna en uygun baglami bulup LLM'e sunmaktir. Ancak ham

kullanici sorgular genellikle yetersiz kalir.

' Gelismis Retrieval Stratejileri

Problem: Kullanici sorgulari belirsiz, cok genis veya alakasiz bilgiler icerebilir. Bu, yanlis dokiimanlarin getirilmesine ve

dolayisiyla yanlis yanitlara yol agar.

Coziim: Sorgu Doniisiimii (Query Transformation) - Kullanicinin orijinal sorgusunu, daha iyi arama sonuclari elde etmek icin

LLM yardimiyla yeniden yazmak veya genisletmek.

1. Multi-Query Retrieval

Tek bir kullanic1 sorusundan birden fazla, farkli acilardan arama
sorgusu tiretmek. Bu, daha kapsamli ve cesitli dokiimanlarin
bulunmasini saglar. Sonuclar birlestirilerek LLM'e sunulur.

- =2 }+r 1-*' —

Query Vector Store) | Documents | '

duery \Vector Store] | Documents) i |Consolidate Answer

Question

> G2 ¢l B | E

Query / |Vector Store] | Documents

2. Rewrite-Retrieve-Read

LLM'den, alakasiz detaylan temizleyerek veya belirsizligi
gidererek, kullanician 'gercek niyetini' yansitan daha net bir
arama sorgusu olusturmasini istemek.

| X =
| - = (+ O
Ambiguous [N Rewnriter | Vector Stare| | Documents Answer

(Question & LNV

Etkili retrieval, sadece vektor aramasi yapmak degil, ayni zamanda dogru soruyu sormaktir.

& NotebooklLM

Seviye Atlama: Durum ve Hafiza Yonetmi (LangGraph)

Problem: RAG uygulamamaiz artik verilerimizle konusabiliyor,
ancak her konusma sifirdan bagliyor. LLM'ler durumsuzdur
(S stank)

(stateless). Onceki etkilesimleri nasil hatirlayabilir ve ¢ok adiml
gorevleri nasil yiiriitebilir?

Cozum: LangGraph ile Durumlu Mimariler Olusturma

LangGraph, durumu (state) acikca yoneten, dongiiler iceren ve e = 2 \
cok adimli mantig1 uygulayan uygulamalar olusturmak icin bir ik
kiitiiphanedir. Geleneksel "zincirlerin" 6tesine gecerek "graflar"” chatbot JEE e > = Kaheilaghmr
olusturmamizi saglar. ——J | veYiikler
. J
LangGraph'in Temel Kavramlari | | Checkpointer
» State: Grafigin hafizasi. Uygulama calisirken giincellenen ve
tum adimlar arasinda paylasilan veri yapisi.
+ Nodes: Is birimleri. Mevcut durumu girdi olarak alan ve bir
glincelleme dondiiren fonksiyonlar (6rnegin, bir LLM'i
cagirmak, bir araci calistirmak).
 Edges: Diiglimler arasindaki baglantilar. Bir sonraki adimi
belirlerler. KD$U.IILI olabilirler (EII‘IIEEiIl, LLM'in glktlsma gﬁt’E Vurgu: Bir *Ehegkpginter‘ EI{IE}'EI'EI(} bu graf her EtkilE§ideﬂ
farkli bir yola gitmek). sonra durumunu kalic1 hale getirir ve gergek bir "hafiza" kazanir.

& NotebooklLM

Zirveye Ulasmak: Dusunen ve Eyleme Gecg¢en Agent'lar Yaratmak

Soru: Uygulamamz artik verilerle konusabiliyor ve hatirlayabiliyor. Peki ya karmasik bir gorevi basarmak icin kendi kendine plan yapabilir, araglar
kullanabilir ve kararlar alabilir mi?

Cevap: Agent Mimarileri

Agent, cevresini algilayan, diisiinen ve hedeflerine ulagmak i¢in otonom olarak eyleme gegen bir sistemdir. LangChain/LangGraph, bu tiir sistemleri
olusturmak icin gliclii bir temel saglar.

Agent'in Kalbi: ReAct Donglisu (Reason + Act)
Agent'lar genellikle bir dongt i¢inde galisir. Bu dongii, LLM'in kontroliindedir:

Dusun (Reason)

LLM, hedefe ulasmak icin atilmasi gereken bir
sonraki adimi belirler. Bu, bir arag kullanmak
veya nihai cevabi vermek olabilir.

Tekrarla _) ﬁ (" ~ | Eyleme Geg (Act)
s) {8

LLM, bir arac¢ (ornegin, "web_search’,

LLM, nihai cevaba ulagtigini | |
diustinene kadar dongu devam eder. | &) _ | 1 “calculator’) kullanmaya karar verirse,
Ne—— LV g gerekli girdilerle birlikte bu araci ¢agirir.

Gozlemle (Observe)

Aracin ciktisi alimir ve bir sonraki diisinme
adimi igin LLM'e girdi olarak verilir.

&1 NotebookLM

LangGraph ile Bir Agent'i Hayata Gecirmek

LangGraph, Agent'in durumunu (6nceki diigiinceler, arag ¢iktilar1) yonetmek ve dongiisel mantig1 uygulamak igin
miikemmel bir aractir. Iste temel bir Agent grafigi:

Grafigin Bilesenleri:

® State
messages listesini igerir. TUm konusma gegmisi,
dusunceler ve arag ¢iktilari burada birikir.

® Model Diigiimii (model_node)
Mevcut messages listesini alir ve bir sonraki adimi
belirler: ya bir tool_call yada son bir cevap igeren
bir AIMessage dondiiriir.

——o Arag Diigiimii (foo!_node)
model_node tarafindan istenen arac¢ ¢agrilarini
yuriitiir ve sonuclan bir ToolMessage olarak
donddirur.

® Kosullu Kenar (Conditional Edge)
model_node'un ¢iktisini kontrol eder. Eger bir
tool_call varsa, akigl tool_node'a yonlendirir.
Eger son cevap varsa, grafigi sonlandinr (END).

Bu mimari, LLM’e esneklik ve otonomi kazandirir. LLM, gorevi tamamlamak i¢in kag adim atmasi gerektigine ve hangi
araclari kullanacagina kendisi karar verir.

&1 NotebookLM

Agent Yeteneklerini Genisletmek: Gelismis Desenler

1kca performans diisebilir. Iste bu noktada daha

Temel agent mimarisi guiclu olsa da, karmasiklik art
gelismis mimariler devreye girer.

1. Reflection (Oz-Elestiri)

Agent'in kendi lirettigi ¢iktilar1 (6rnegin, bir kod parcasi,
bir metin taslagi) elestirmesi ve iyilestirmesi icin bir
‘elestirmen’ LLM'1 dongliye dahil etmek. Bu, 'System 2'
dustinmesini taklit ederek daha glivenilir sonuclar tretir.

(BASLAT)
v

GENERATE :
(Cikti Oret)

REFLECT 2. 1
(Elestir ve lyilestir)

BITIR
(Nihai Sonug)

2. Multi-Agent Sistemler

Tek bir biiylik agent yerine, her biri belirli bir gorevde

uzmanlasmis (Ornegin, Arastirmaci, Kodlayici, Planlayici)
birden fazla agent' bir araya getirmek. Bir 'Suipervizor’
agent, gorevi alt gorevlere ayirir ve dogru uzmana devreder.

v

SUPERVIZOR

v

[ARASTIRMACIJ [KODLAYICI J [PLANLAYICI J

Vurgu: LangGraph'in 'subgraph' 6zelligi, bu tiir modiiler ve hiyerarsik multi-agent sistemlerini kolayca olusturmanizi saglar.

& NotebooklLM

Son Adim: Agent’inizi Dunyayla
Bulusturmak (Deployment)

Harika bir Al agent" gelistirdiniz. Peki simdi ne olacak? Onu nasil giivenilir, 6lceklenebilir ve izlenebilir bir sekilde
liretime tasiyacaksimz? Bu, yoleulugun en kritik agamalanndan biridir.

Yerel Gelistirme Ortam

([|¢—| ===

LI || —

@

=

Uretim Ortami

__}Q

i

18

@@

i

=

Uretim Ortaminin Temel Gereksinimleri

2 o
Ik
=2

oL
Q—o0
g\n

Backend API

Backend API ve endpoint sone ot
serverter endpoin her galam ciinyr,

Vector Store

Vector Store darbunu strasyaginin
data ve gonentek verindlir.

Cozilim: LangGraph Platform ve LangSmith

LangChain ekosistemi, bu zorluklan asmak i¢in entegre bir ¢coziim sunar.

Entegre Cozim

 LangGraph

Gozlemleme (Observability)

Giizlemleme, observability semmianan,
platformin pslandan ve dézzemimr.

Dayaniklilik (Persistence)

Dayamkhlik data stopnat ve yiinenine

siikeri integresime container.

sl LangSmith

&1 NotebookLM

Uretim icin Glic Merkezi: LangGraph Platform ve LangSmith

LangGraph Platform: Agent’larinizi
Dagitmak ve Olgceklendirmek icin

LangGraph agent’larini biiytik olcekte
dagitmak ve barindirmak icin
yonetilen bir servistir. Yatay
olceklendirme, gorev kuyruklar: ve
dayanikli Postgres checkpointer’i
yoneterek uygulamanizin bir¢ok
eszamanli kullaniciyr

desteklemesini saglar.

Source Serif Pro

Tek tikla dagitim (GitHub
entegrasyonu)

rQG) Human-in-the-loop kontrolleri

_© Double texting yonetimi (Interrupt,
~“o Enqueue vb.)

Asenkron ve zamanlanmig gorevler
(Cron jobs)

LangSmith: Agent’larinizi

Anlamak ve lyilestirmek igin

LLM uygulamalarinizi ugtan uca
izlemek, hata ayiklamak, test etmek ve

~Start__ m

degerlendirmek icin hepsi bir arada
bir gelistirici platformudur.

Moow, wdsomt o LEkl s SDurc‘e Serif prﬂ

Ay U e gng Feirali degg ham

d

R
continue .

f ond

.
b

i

Tracing: Her bir LLM ¢agrisini, arag
kullanimini ve prompt'u detayli
olarak gorme.

Evaluation: Performansi 6lgmek icin
test setleri olusturma ve otomatik
degerlendiriciler (evaluators)
calistirma.

Monitoring: Uretimdeki
uygulamanizin kullanimini, hatalarini,
gecikmesini ve maliyetlerini takip etme.

Prompt Hub: Prompt'lar yonetmek
ve versiyonlamak.

& NotebooklLM

Surekli lyilestirme Déngiisii: Test ve Degerlendirme

LLM uygulamalar1 deterministik degildir. Model giincellemeleri veya veri dagilimindaki degisiklikler nedeniyle performans
zamanla diisebilir (“model drift"). Bu nedenle, siirekli bir test ve iyilestirme dongiisii kurmak hayati 6nem tasir.

Production Phase

1 Monitor app in
production]

Monitoring

Deploy apps
Design Phase : Preproduction Phase 5
Error handling in : Test app before
your app deploying
. _ Self-correction | g
App design: : Testing LT
Add nodes for el Testapp for Regression? i Nﬂ,
error handling R : regressions :
e J pp E A J

1 : | |
| T E Yes :

Test app inputs/
outputs

Y

& Camparing Expariments

LangSmith ile Degerlendirme Adimlari

1. Dataset Olusturma: Uygulamanizi degerlendirmek icin girdiler ve beklenen ¢iktilar iceren
ornekler koleksiyonu olusturun (manuel, loglardan veya sentetik olarak).

2. Degerlendirici (Evaluator) Tanimlama:
o “Heuristic": Ciktinin JSON formatinda olup olmadigini kontrol etmek gibi kod tabanli kurallar.
o “LLM-as-a-Judge": Ciktinin dogrulugunu, alaka diizeyini veya diger niteliksel 6zelliklerini

degerlendirmek icin baska bir LLM kullanmak.

o "Human Feedback": Annotation Queues araciligiyla insan degerlendirmelerini toplamak.

3. Regresyon Testi Yapma: Uygulamanizda yaptiginiz bir degisikiigin (6rn. yeni bir prompt)

performansi dlisiiriip diigirmedigini anlamak i¢in farkli versiyonlar birbiriyle kargilagtirin. o ==n

Pisssoin . ESEENE f EIESE MEIEED ' SENTYEEERET B

W Y R A N S N S S L M 1

Gelistirici Yolculugunun Ozeti: Yapi Taslarindan Akilli Sistemlere

Bu sunumda, basit bir LLM ¢agrisindan yola ¢ikarak, adim adim daha yetenekli ve otonom sistemler insa
etme yolculugunu tamamladik.

&

|| ’—WJ"W'/“
1. Temel Zincir 2. Veriyle 3. Hafiza 4. Otonomi 5. Uretim
(Chain) Guclendirme (Memory) (Agents) (Production)
"Prompt -> LLM" - (RAG) ‘LangGraph' ile "ReAct’ dongust ile “LangSmith’ ile
Ik prototip. Kendi verilerinizle durumlu, diyalog duslnen ve eyleme dag@itim, izleme ve
konusma yetenegi. kurabilen uygulamalar. gecen sistemler. surekli iyilestirme.

En giicli Al uygulamalari, tek bir devasa modelden degil, LangChain gibi araclarla bir araya
getirilmis, 1yl tasarlanmig mimarilerden dogar. Bu sadece bir teknoloji degil, ayni1 zamanda
bir insa etme sanati ve bilimidir. Yolculugunuz simdi bashyor.

& NotebooklLM

